ASD 535

Aspirating smoke detector

From production version 131221 and FW version 01.10.xx
The ASD 535 aspirating smoke detector performs the task of taking continuous air samples via one or two sampling pipe networks from a monitored area and feeding the samples to one or two smoke sensors.

The ASD 535 consists of the detector housing and one or two sampling pipe tube networks. The sampling pipes have several sampling holes whose size is such that each hole withdraws the same amount of air. The sampling pipes may be $\mathrm{I}-$, U-, T-, H-, or Eshaped. The sampling pipes are usually symmetrically designed. Asymmetrical sampling pipe tube networks can also be implemented using the "ASD PipeFlow" calculation software.

Fig. 1 ASD 535-4

Description

Integrated in the detector housing is a high-speed fan which, in conjunction with the sampling pipe, ensures uninterrupted air supply to the detector housing. Airflow monitoring detects any blockages or breaks in each of the sampling pipe networks.

Available versions:

- ASD 535-1 for 1 sampling tube, and 1 smoke sensor
- ASD 535-2 for 2 sampling tubes, and 2 smoke sensors without smoke level indicator;
- ASD 535-3 © for 1 sampling tube, and 1 smoke sensor with smoke level indicator;
- ASD 535-4 (1) for 2 sampling tubes, and 2 smoke sensors with smoke level indicator.
- ASD 535-3 HD (1) like ASD 535-3, with increased IP protection and painted printed circuit boards;
- ASD 535-4 HD (1) like ASD 535-4, with increased IP protection and painted printed circuit boards.

©
(1) The descriptions for ASD 535-3 and -4 in this document also apply to the ASD 535-3 HD and -4 HD versions.

Usable smoke sensors:

-	SSD 535-1
-	SSD 535itivity range 0.5 to $10 \% / \mathrm{m}$
-	SSD 535-3

Usable expansion modules (max. 4 units)

- XLM 35, ML-SFD, SLM 35, RIM 35, MCM 35, SIM 35, UIM 35

The ASD 535 can be linked to a higher level FACP by means of potential-free change-over contacts.
With the XLM 35, ML-SFD or SLM 35, the ASD 535 can be ideally connected to the SecuriFire and Integral fire alarm systems (with SLM also to SecuriPro).
The RIM 35 enables the availability of all three pre-signal levels as well as the states "smoke sensor dirty" and "LS-Ü blockage" as relay contacts. The relays are freely configurable (via "ASD Config").
The MCM 35 serves to record operating data.
Up to 250 ASDs can be networked with the SIM 35; they can then be visualised and operated using "ASD Config".

The ASD 535 aspirating smoke detector can be used for:

- Equipment monitoring: EDP systems, electrical distributors, switch cabinets, etc.
- Space surveillance: EDP rooms, clean rooms, warehouses, high-rack storage buildings, deep-freeze warehouses, hollow floors, protection of cultural objects, transformer stations, prison cells, etc.

In agricultural areas and applications as well as in areas with increased requirements for IP protection and resistance to moisture and corrosion, the ASD 535-x HD device version can be used.

The response behaviour of the ASD 535 has been tested in compliance with EN 54-20, Class A, B and C.

When setting up ASD 535 fire alarm systems, the information and specifications in "Technical description ASD 535" must be observed and adhered to. This includes among others:

- General
- Safety informations
- Planning
- Mounting
- Installation
- Commissioning
- Operation

Section 1
Section 1.2.2
Section 4
Section 5
Section 6
Section 7
Section 8

Opening the detector housing

Press the rotary snap locks down firmly with a screwdriver (min. No. 5) toward the housing base and then turn 90°. The position of the lock slit shows the current state:

- approx. 45° angled toward detector housing corner $=$ closed
- approx. 45° angled toward detector housing edge $=$ open
The rotary snap locks must snap into place.
The housing cover (control unit) is connected to the Main Board by a flat cable. Make sure that when the housing cover is lifted away the flat cable does not become damaged.

Connection

Fig. 2 View inside the ASD 535

AMB 35 device connections
The electrical connection is implemented by means of plug-in terminals.

Term.	Signal
1	Main power supply line
2	
3	Redundant power supply line
4	
5	+ Supply (for OC consumers)
6	Output fault, OC (all events)
7	Output alarm I, OC
8	Output alarm II or freely programmable, OC
9	unused
10	Fault (2)
11	
12	
13	Alarm I
14	
15	
16	Alarm II or freely programmable
17	
18	
19	Optocoupler input
20	
21	(may be available at a later date)
22	
23	-
24	Connection MFU 535, REK 535 (available later)
25	
26	
	(1) UL/FM: +12.4 to +27 VDC (2) The "Fault" relay has picked up in the normal state contact Te. 12/10 closed, 12/11 open (ASD 535 under voltage; no fault present).

AMB 35 internal connections

Terminal assignment of the additional modules
The terminal assignments of the additional modules are shown in the corresponding data sheets (see "Article numbers and spare parts").

Wiring principle

(1)
Examples of and information about wiring are found in Technical description ASD 535, T 131192 E, Sec. 6.

Deploying smoke sensors

Smoke sensors are not fitted when the ASD 535 is delivered. They are application specific (according to required sensitivity range), purchased from the manufacturer and installed after the detector housing is mounted (see Fig. 3).

- The smoke sensors should always be removed from their protective packaging just before deployment in the detector housing.
- Depending on the situation (e.g. if there is a long time between mounting and commissioning or if the environment is very dusty due, for example, to construction), the smoke sensors should be installed just before commissioning the ASD 535.
- Before installing the smoke sensors, check that the protective screens against insects are properly fitted to the air inlet and outlet in the smoke sensor chambers.
- The smoke sensor chamber must be absolutely free of dirt and dust. Any waste or other materials resulting from mounting the detector housing must be removed.

The installation position of the smoke sensors depends on the particular smoke sensor chamber (I or II). The connectors of the smoke sensors are oriented toward the outside of the ASD housing. Incorrect installation positioning is prevented by the anti-twist rib on the smoke sensor housing.
The smoke sensors are fastened with the two lock clamps in the ASD housing. The electrical connection to the AMB 35 Main Board is accomplished with the supplied ribbon cable.
The smoke sensor chamber II on the ASD 535-1 and -3 (only one smoke sensor) remain open (insect protection screens and lock clamps are not fitted, air channels are closed).

Fig. 3 Deploying the smoke sensors

Displays on the control unit

Several LEDs on the control unit indicate the current state of the ASD 535. The table below lists only the states for the ASD 535-1 resp. -3 (one smoke sensor / one sampling pipe). Except for the operation display, the displays are doubled for the ASD 535-2 resp. -4 (I and II).

Function / state	$\begin{aligned} & \text { 들 } \\ & \text { 듕 } \\ & \text { © } \end{aligned}$		亦		
	green	red	yell.	yell.	yell.
System Off (no voltage)					
System inactive (external reset)	On		$1 / 2 \mathrm{~T}$		
Smoke sensor Off (from FACP)	On		1/2 T		
Idle state	On				
Blockage / pipe breakage, delay time running	On		1 T		
Blockage / pipe breakage, fault triggered	On		On		
Fan tacho signal lacking	On		On		
Fault triggered	On		On		
Pre-signal 1 (ASD 535-1 / -2)	On	2 T			
Pre-signal 2 (ASD 535-1/-2)	On	1 T			
Pre-signal 3 (ASD 535-1 / -2)	On	1/2 T			
Smoke level 1-10 (ASD 535-3 / -4) (3)	On				On
Pre-signal 1, 2, 3 (ASD 535-3 /-4) (3)	On				1 T
Alarm	On	On			
Smoke sensor filter fault	On			2 T	
Smoke sensor dusty	On			1 T	
Smoke sensor dirty	On			1/2 T	
Smoke sensor fault	On			On	
Lamp test (press "Reset" 10 s)	1 T	1 T	1 T	1 T	1 T

(1) Additional for ASD 535-3 and -4
(2) No fault triggered (triggers only after the delay time expires \rightarrow "Fault" LED display continuously lit).
(3) The LED of the respective smoke level 1-10 (corresponds to $10-100 \%$ of alarm threshold) is continuously lit when exceeded. If a pre-signal is programmed on this level, the LED subsequently begins to flash (default: VS 1 = level 3, VS 2 = level 5, VS 3 = level 7).
$\mathbf{T}=$ Flashing indicator; $1 / 2 \mathrm{~s}$ cycle $/ 1 \mathrm{~s}$ cycle $/ 2 \mathrm{~s}$ cycle

Displays on the AMB 35 Main Board

On the AMB 35 there is a 3-digit segment display which can have the following outputs and displays:

- flashing, point and $A L=$ Autolearning running;
- flashing, point and $F r=$ filter replacement is running;
- flashing point and point continuously lit = day/night control active;
- switch setting $\boldsymbol{d}>\boldsymbol{R E}=$ filter service life;
- switch setting $E=$ event memory $\mathbf{E 0 1}$ to E99;
- switch setting $F=$ firmware version;
- press "UP" key = set configuration A11 to X03;
- switch setting V = airflow values (airflow rate);
- flashing $000=$ invalid entry;
- flashing U-- = initial reset is running;
- flashing IA1, IA2, IF1, IF2, IP1, IP2, IE1, IE2 = test trigger is activated.

Programming

The ASD 535 has switch settings which are configured with permanently assigned parameters:

- normative system limits according to EN 54-20, Class A to C, settings A11 to C32;
- non-normative system limits, settings W01 to W48;
- Configurable positions for settings after using "ASD PipeFlow" and/or "ASD Config" or SecuriPro, SecuriFire or Integral FACP (SLM 35 / ML-SFD / XLM 35), X01 to X03.

\squareThe parameters are saved at the factory with values for compliance with EN 54-20. Changing the parameters may result in non-compliance with EN 54-20. Reprogramming on the ASD 535 using "ASD Config" may be carried out only by the manufacturer or by persons under the supervision of and trained by the manufacturer.

Switch settings on the AMB 35 Main Board

Pos.	Range / Display	Purpose
A	A11 / A12	acc. to EN 54-20, Class A
b	b11 / b12 / b21 / b22	acc. to EN 54-20, Class B
C	$\begin{array}{\|l\|} \hline \text { C11 / C12 / C21 / C22 / } \\ \text { C31 / C32 } \end{array}$	acc. to EN 54-20, Class C
d	Polling (RE) Setting (SE) $\stackrel{y}{4}$ on / T / R / oFF	```on = On / oFF = Off \(\boldsymbol{T}=\) filter service life \(\boldsymbol{R}=\) filter replacement \(\boldsymbol{b}=\) both ch1 = channel I```
E	$\begin{aligned} & \hline \text { E01 to E99 } \\ & \Leftrightarrow \text { G00 to G99 } \end{aligned}$	Event memory E01 - E99 () $)$ Event group G00 - G99
F	F00 to F99 (3 x)	Display of firmware version
I	IA1 / IA2 IF1 / IF2 IP1 / IP2 IE1 / IE2	Trigger; Test alarm (IA.) Test fault (IF.) Test pre-signal (IP.) Test alarm 2 (IE.)
0	000	Log off additional modules (optional modules)
T	Y10 to Y99 / M01 to M12 d01 to d31 / H00 to H23 M00 to M59	Polling (RE) and setting (SE) the date and time
U	U01	Execute initial reset
V	V01 / V02, each 000 to 255	Output airflow rate in \% Pipe I (=V01), pipe II (=V02)
W	W01 to W48	non-normative
X	X01 to X03	configurable

The table lists only the available switch settings. Information about entry procedure is found in Technical description T 131192 E, Sec. 8.3.

System limits without "ASD PipeFlow" calculation

The system limits apply to planning without the "ASD PipeFlow" calculation software. There are two areas with the following meaning:

- Normative system limits compliant to EN 54-20, Class A to C, switch settings A11 to C32;
- Non-normative system limits,
switch settings W01 to W48.

Normative system limits

Switch settings $\boldsymbol{A 1 1}$ to $\mathbf{C 3 2}$ have configured values which are necessary for alarm response sensitivity and airflow monitoring compliance with EN 54-20 Class A to C. The switch setting designation is deciphered as follows:

- First digit Response class $\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{C}$ compliant with EN 5420;
- Second digit System limit 1, 2, 3 (pipe topology);
- Third digit Number of pipe networks 1, 2 on the ASD.

Example: b22 Response class b/system limit 2 / 2 sampling pipe tube networks.

Non-normative system limits

Switch settings W01 to W48 contain system limits which fulfil only the alarm response sensitivity for EN 54-20 Class A to C but not the normative limits concerning airflow monitoring. Since these are identical to system limits A11 to C32 concerning pipe topology (pipe network length, number of sampling holes), switch settings W01 to W48 are also included in the tables below. Additional information about switch settings W01 to W48 concerning number of pipe networks and airflow monitoring can be found in Technical description T 131 192, Sec. 4.4.4.4.

©
Switch settings W01 to W48 may be used only after consulting with the manufacturer. The configured values they contain concerning airflow monitoring are not tested in accordance with EN. For further information about using the system limits table is found in Technical description T 131 192, Sec. 4.4.4.3 and 4.4.4.4.

System limits table for planning without "ASD PipeFlow" calculation
EN 54-20 compliance, Class A (highly sensitive)

$\begin{aligned} & \mathscr{0} \\ & \text { た } \\ & \text { テ } \end{aligned}$											
		1 tube	2 tube	1 tube	2 tube						
I	1	A11	A12	W01 - W04	W05 - W08	-3	0.03	---	50 m	1-7	50 m
U / T	1	A11	A12	W01 - W04	W05 - W08	-3	0.03	1-20 m	40 m	1-4	80 m
H	1	A11	A12	W01 - W04	W05 - W08	-3	0.03	$1-20 \mathrm{~m}$	40 m	1-2	160 m
E	1	A11	A12	W01 - W04	W05 - W08	-3	0.03	$1-20 \mathrm{~m}$	40 m	1-3	120 m

EN 54-20 compliance, Class B (sensitive)

	1	b11	b12	W09 - W12	W13-W16	-3	0.09	---	50 m	1-7	50 m
	2	b21	b22	W17 - W20	W21-W24	-3	0.06	---	70 m	5-9	70 m
U / T	1	b11	b12	W09 - W12	W13-W16	-3	0.09	1-20 m	40 m	1-3	80 m
	2	b21	b22	W17 - W20	W21-W24	-3	0.06	$1-20 \mathrm{~m}$	55 m	3-5	110 m
H	1	b11	b12	W09 - W12	W13-W16	-3	0.09	$1-20 \mathrm{~m}$	35 m	1-2	140 m
	2	b21	b22	W17-W20	W21-W24	-3	0.06	$1-20 \mathrm{~m}$	45 m	2-3	180 m
E	1	b11	b12	W09 - W12	W13-W16	-3	0.09	$1-20 \mathrm{~m}$	40 m	1-2	120 m
	2	b21	b22	W17 - W20	W21-W24	-3	0.06	$1-20 \mathrm{~m}$	50 m	2-3	150 m

EN 54-20 compliance, Class C (standard)

I	1	C11	C12	W25-W28	W29 - W32	-1	0.8	---	40 m	1-5	40 m
	2	C21	C22	W33-W36	W37-W40	-2	0.35	---	80 m	3-9	80 m
	3	C31	C32	W41-W44	W45-W48	-2	0.13	---	110 m	7-16	110 m
U / T	1	C11	C12	W25-W28	W29 - W32	-1	0.8	1-20m	30 m	1-3	60 m
	2	C21	C22	W33-W36	W37-W40	-2	0.35	$1-20 \mathrm{~m}$	60 m	3-5	120 m
	3	C31	C32	W41-W44	W45 - W48	-2	0.13	$1-20 \mathrm{~m}$	70 m	5-9	140 m
H	1	C11	C12	W25-W28	W29 - W32	-1	0.8	$1-25 \mathrm{~m}$	35 m	1-2	140 m
	2	C21	C22	W33-W36	W37-W40	-2	0.35	1-25 m	45 m	2-3	180 m
	3	C31	C32	W41-W44	W45-W48	-2	0.13	1-25 m	60 m	3-5	240 m
E	1	C11	C12	W25-W28	W29 - W32	-1	0.8	$1-20 \mathrm{~m}$	30 m	1-2	90 m
	2	C21	C22	W33-W36	W37-W40	-2	0.35	1-20 m	50 m	2-3	150 m
	3	C31	C32	W41 - W44	W45 - W48	-2	0.13	1-20 m	60 m	3-6	180 m

Sampling holes for planning without "ASD PipeFlow"-calculation

The tables below show the respective hole diameters for the numbers in Fig. 4 as a function of the number of sampling holes per sampling branch.

I-shaped sampling pipes																
Number of sam-	Hole diameter in mm for the sampling hole number from ASD															
sampling branch	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	5.0															
2	4.0	5.0														
3	4.0	4.0	5.0													
4	3.5	3.5	4.0	5.0												
5	3.5	3.5	3.5	4.0	5.0											
6	2.5	2.5	2.5	2.5	3.0	5.0										
7	2.5	2.5	2.5	2.5	2.5	2.5	5.0									
8	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5.0								
9	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5.0							
10	2.0	2.0	2.0	2.5	2.5	2.5	2.5	2.5	3.0	7.0						
11	2.0	2.0	2.0	2.0	2.5	2.5	2.5	2.5	2.5	4.0	7.0					
12	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5	2.5	2.5	4.0	7.0				
13	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5	2.5	2.5	4.0	7.0			
14	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5	2.5	4.0	7.0		
15	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5	4.0	7.0	
16	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.5	4.0	7.0

U/T-shaped sampling pipes									
Number of sampling holes per sampling branch	Hole diameter in mm for the sampling hole number from ASD								
	1	2	3	4	5	6	7	8	9
1	5.0								
2	4.0	5.0							
3	4.0	4.0	5.0						
4	4.0	4.0	4.0	5.0					
5	4.0	4.0	4.5	5.0	6.5				
6	3.0	3.0	3.5	3.5	4.0	6.5			
7	2.5	3.0	3.0	3.5	3.5	4.0	6.5		
8	2.5	2.5	3.0	3.0	3.5	3.5	3.5	7.0	
9	2.5	2.5	3.0	3.0	3.5	3.5	3.5	3.5	7.0

H/E-shaped sampling pipes						
Number of sampling holes per sampling branch	Hole diameter in mm for the sampling hole number from ASD					
	1	2	3	4	5	6
1	5.0					
2	4.0	5.0				
3	4.0	4.0	5.5			
4	3.0	3.0	3.5	5.5		
5	2.5	3.0	3.0	3.0	6.0	
6 (E-shaped only)	2.5	2.5	3.0	3.0	3.5	6.0

Fig. 4 Size of sampling holes

Data sheet

Configuration options, Table A:

The following criteria can be set for each smoke sensor / sampling pipe. Also, the criteria for day/night control can be separately set. Configuration changes are saved on X01 to X03.

Sector - Parameter	Default Setting	Range	Resolution I Levels	Saving after change
Alarm 2				
- Alarm 2 On / Off	Off	Off / On		X01-X03
- Sensitivity (always at least 20\% over Alarm)	1 \%/m	- $10 \% / \mathrm{m}$	0.0002 \%/m	X01-X03
- Alarm 2 delay	2 s	0s-60s	1 s	X01-X03
- Alarm 2 latching	On	On / Off		X01-X03
- Holding time for area switching (Al 2 to Al)	20	10-250	1 s	X01-X03
Alarm				
- Alarm threshold (dependent on smoke sensor type and response class according to EN 54-20)	C11 / C12	$\begin{gathered} \hline 0.02-10 \% / \mathrm{m} \\ 0.1-10 \% / \mathrm{m} \\ 0.5-10 \% / \mathrm{m} \\ \hline \end{gathered}$	0.0002 \%/m	X01-X03
- Smoke level average value formation (number)	4	1-10	1	X01-X03
- Alarm delay (UL/ULC max. 30 s)	2 s	0s-60s	1 s	X01-X03
- Alarm cascade	Off	Off / On		X01-X03
- Alarm latching	On	On / Off		X01-X03
Pre-signal				
- Pre-signal 1 On / Off	On	On / Off		X01-X03
- Pre-signal 2 On / Off	On	On / Off		X01-X03
- Pre-signal 3 On / Off	On	On / Off		X01-X03
- Pre-signal 1 (100\% = alarm threshold)	30\%	10-90\%	10\%	X01-X03
- Pre-signal 2 (100\% = alarm threshold)	50\%	VS $1+10-90 \%$	10\%	X01-X03
- Pre-signal 3 (100\% = alarm threshold)	70\%	VS $2+10-90 \%$	10\%	X01-X03
- Pre-signal delay (VS 1 - VS 3)	2 s	0s-60 s	1 s	X01-X03
- Pre-signal latching	Off	Off / On		X01-X03
Smoke sensor dust/dirt				
- Smoke sensor dust On / Off	On	On / Off		X01-X03
- Smoke sensor dirt On / Off	On	On / Off		X01-X03
- Dust threshold (\% of Al)	50\%	5-60\%	5\%	X01-X03
- Dirt threshold (\% of Al)	75\%	65-100\%	5\%	X01-X03
- Dust latching	On	On / Off		X01-X03
- Dirt latching	On	On / Off		X01-X03
- Fault delay of smoke sensor	30 s	0s-60s	1 s	X01-X03
Airflow monitoring				
- LS-Ü blockage On / Off	On	On / Off		X01-X03
- LS-Ü pipe breakage On / Off	On	On / Off		X01-X03
- LS-Ü sensitivity (applies to A01 to C32) (1)	$\pm 20 \%$ (1)	$\pm 10- \pm 70 \%$	$\pm 10 \%$	X01-X03
- LS-Ü average value formation (number)	20	1-30	1	X01-X03
- LS-Ü delay time (applies to A01 to C32) (1)	300 s (1)	$10 \mathrm{~s}-3.600 \mathrm{~s}$	1 s	X01-X03

(1) Increased values are configured for switch settings W01 to W48; these are not tested for EN compliance (see Technical description T 131192 E, Sec. 4.4.4.4).

Configuration options, Table B:
The following criteria apply to the entire ASD 535. Saving a configuration after changes is performed in the context of the adaptations in Table A on one of the freely programmable switch settings X01 to X03

Sector - Parameter	Default Setting	Range	Resolution I Levels	Saving after change
Autolearning				
- Autolearning On / Off	Off	On		X01-X03
- Autolearning duration	3 days	1 min to 14 days	min, h, days	X01-X03
- Autolearning factor (of measured Al threshold)	1.5	$1.1-10 \mathrm{x}$		X01-X03
Day/night control / day of the week control				
- Day/night control On / Off	Off	Off / clock / FACP / input "OEM1 / St"		X01-X03
- Day start time (only with "Clock")	06:00	00:00-24:00	1 min	X01-X03
- Night start time (only with "Clock")	20:00	00:00-24:00	1 min	X01-X03
- Day of the week control (only with "Clock")	On	Mo to Su	days	X01-X03

Continuation table B:

General faults				
\bullet Lithium battery / clock fault	On	On / Off		
Ventilator				
\bullet Fan speed	Level III	Level I to V		
Deactivate / switch off sensor			X01	
\bullet Smoke sensor I / Smoke sensor II				
\bullet Switch off (partial planning) only smoke sensor II	On	On / deactivated / switched off (partial planning)		X03

Configuration options, Table C:
Independent configurations. These can be changed independently of the switch settings in the ASD 535 .

Sector - Parameter	Default Setting	Selection
Time		
- Year, month, day, hour, minute	---	minutes - year
Relay / OC module / reset button / various		
- Relay 3 and OC module 3, AMB 35	Alarm II	
- Relay 1, $1^{\text {st }}$ RIM 35	Pre-signal 1 smoke sensor I	
- Relay 2, $1^{\text {st }}$ RIM 35	Pre-signal 2 smoke sensor I	
- Relay 3, $1^{\text {st }}$ RIM 35	Pre-signal 3 smoke sensor I	
- Relay 4, $1^{\text {st }}$ RIM 35	Smoke sensor I dirty	According to
- Relay 5, $1^{\text {st }}$ RIM 35	Sampling pipe I blockage	"Configuration options
- Relay 1, $2^{\text {nd }}$ RIM 35	Pre-signal 1 smoke sensor II	relay allocation"
- Relay 2, $2^{\text {nd }}$ RIM 35	Pre-signal 2 smoke sensor II	
- Relay 3, $2^{\text {nd }}$ RIM 35	Pre-signal 3 smoke sensor II	
- Relay 4, $2^{\text {nd }}$ RIM 35	Smoke sensor II dirty	
- Relay 5, $2^{\text {nd }}$ RIM 35	Sampling pipe II blockage	
- Reset button On / Off	On	On / Off
- Heating control, subsequent heating time	2 min	1-60 min
- MCM settings, recording interval	1 s	$1-120 \mathrm{~s}$
- MCM smoke peak value memory	Off	Off / On
- Perform initial reset	---	On / Off
- Smoke sensor operation mode (smoke sensor I / II)	SSD/DMB	SSD/DMB or OEM inputs (single or in combination) Switched off
- Isolate smoke sensor (smoke sensor I / II)	Normal operation	Isolate / normal operation
- REK configuration	Off	Alarm 1 - Alarm 4 / faults
- Filter monitoring (smoke sensor I / II)	Off	Off / On
- Filter service life	6 months	1-24 months
- Read out operation time	---	months / days
- Filter replacement	---	start / finish

Relay allocation configuration options:

The following criteria can be programmed on a max. of 11 relays (1 AMB 35 unit on ASD 535-1 and -3 , 5 units on $1^{\text {st }}$ RIM 35 , 5 units on $2^{\text {nd }}$ RIM 35):

Smoke sensor I / LS-Ü I	Smoke sensor II / LS-Ü II	General
Smoke sensor I alarm	Smoke sensor II alarm	Fan fault
Pre-signal 1 smoke sensor I	Pre-signal 1 smoke sensor II	Operating voltage fault
Pre-signal 2 smoke sensor I	Pre-signal 2 smoke sensor II	Initial reset fault
Pre-signal 3 smoke sensor I	Pre-signal 3 smoke sensor II	Lithium battery / clock fault
Smoke sensor I dusty	Smoke sensor II dusty	
Smoke sensor I dirty	Smoke sensor II dirty	only with ASD 535-1 and ASD 535-3
Smoke sensor I fault	Smoke sensor II fault	REK event, alarm 1
Sampling pipe I pipe blockage	Sampling pipe II pipe blockage	REK event, alarm 1
Sampling pipe I pipe breakage	Sampling pipe II pipe breakage	REK event, alarm 1
Heating control sampling pipe I	Heating control sampling pipe II	REK event, alarm 1
Alarm 2 smoke sensor I	Alarm 2 smoke sensor II	REK event, faults

The criteria can also be allocated with the or function (example: smoke sensor dust or dirt together on one relay).

Commissioning

When commissioning the ASD 535, it is necessary to perform an initial reset for automatically adjusting the airflow monitoring on the connected sampling pipe(s).

If the ASD 535 is operated without "ASD PipeFlow" calculation, commissioning with the "EasyConfig" method can be carried out directly on the ASD 535.

For projects in which the "ASD PipeFlow" calculation software was used or in which customer-specific adaptations have to be made in the device configuration, the "ASD Config" configuration software has to be used.

Starting up

©Before the ASD 535 is switched on, it is absolutely necessary that all of the required measures have been performed (see T 131 192, Sec. 7.1).

- sampling pipe correctly mounted and connected;
- smoke sensors installed and connected;
- isolation strip on the Lithium battery (AMB 35) removed.

Sequence and procedure for starting up:

1. Switch on supply voltage (FACP); while the fan accelerates stepwise to its final speed (takes about 100 s), the next procedure can be carried out. The system is immediately armed for alarm.
2. "EasyConfig": select necessary switch setting for operation according to "System limit table" (e.g. "b22") \rightarrow see "Reprogramming".

- or:
"ASD Config": after adapting the configuration (alarm threshold according to "ASD PipeFlow" and other criteria in Tables A and B), select switch setting "X01", "X02" or "X03".

3. Set date and time via AMB 35 with "EasyConfig" or from "ASD Config" (adoption by PC).
4. Following a minimum waiting time of 5 min after switching on, an initial reset must be performed (possible only via AMB 35) \rightarrow see "Initial reset".
5. The ASD 535 is now ready for operation.

Re-programming

Example: Response class B, system limit 2, ASD 535-4 (2 sampling tubes), required switch setting b22.

Measure	Display	Procedure, remarks

©Switch settings W01 to W48 may be used only after consulting with the manufacturer. The configured values they contain concerning airflow monitoring are not tested in accordance with EN.

6. Press the "UP" key	flashing C32	- Display of the default setting
7. Press "UP" key twice until display shows \boldsymbol{b}	in succession $\boldsymbol{A} / \boldsymbol{b}$	- Display switch setting group b
8. Press the "OK" key	b11	- Display of the smallest possible setting in group b
9. Press the "UP" key until display shows b22	$\begin{aligned} & \text { in succession b11 / } \\ & \text { b12 / b21 / b22 } \end{aligned}$	- Display of the possible settings in group b
10. Press the "OK" key	flashing \boldsymbol{b}-- (approx. 4 x)	- New setting is programmed
11. Check: Press the "UP" key	flashing b22	- Display of the new setting

Initial reset

Measure	Display	Procedure, remarks
Before performing an initial reset after switching on the ASD 535, a waiting time of at least 5 min must be ob		

1. Press the "UP" key	flashing C32 or other	- Display of the default setting or the installa-tion-specific switch setting
2. Press the "UP" key several times until display shows \boldsymbol{U}	in succession \boldsymbol{A} to U	- Display of the switch setting group U
3. Press the "OK" key	U01	- Display initial reset On
4. Press the "OK" key again	flashing U-(5 to max. 120 s)	- Initial reset in progress
5. Wait	flashing point (watchdog indica- tor)	- Initial reset completed

Filter replacement

When filter monitoring is activated and after expiry of the configured filter service life, a "Filter fault (service life exceeded)" fault is triggered. To remedy, the filter element in a dust filter unit must be replaced. When the expired filter service life (read out via EasyConfig switch position $\boldsymbol{d}>\boldsymbol{R E}$) is periodically checked, the replacement can take place before the fault is triggered.

0For an activated filter replacement the ASD is set to the "isolate" state. This insures that during the replacement work falling dust particles from the filter element do not cause a false alarm.
When the ASD 535 housing is closed, the "Start filter replacement" function can be activated by means of the "Reset" key. To do so, press the key longer than 15 s (attention: lamp test after 10 s). Af ter 15 s the filter replacement is started and indicated by switching to the "Isolate" state (LED "Fault"). On an ASD 535-2 and -4 (2channel device) the filter replacement is started simultaneously for both smoke sensors (provided the filter monitoring is activated). When the "Reset" key is deactivated (via "ASD Config"), the "Start filter replacement" function is not accessible.
After the filter has been replaced, the "Filter replacement" procedure is completed by pressing the "Reset" key on the ASD. This cancels the "Isolate" state and resets the fault on the ASD. "Filter service life" monitoring is restarted at 0 .
The filter replacement can also be started via EasyConfig switch position $\boldsymbol{d}>\boldsymbol{S E}$. For information please refer to Technical Description T 131 192, Section 7.8.

Measurements / commissioning protocol

Carry out the following measurements:

- Measure operating voltage on terminals $1(+), 2(-)$ (if redundant supply, then also terminals $3 \& 4) \rightarrow$ target value $=12.3$ to 13.8 VDC (in 12 VDC operation) or 21.6 to 27.6 VDC (in 24 VDC operation).
- Airflow values in switch settings \boldsymbol{V} (see Technical description T 131 192, Sec. 7.6.1)
The commissioning protocol is like a personal history of the ASD 535 and should therefore be filled out conscientiously and completely and stored in the ASD 535. If required, a copy can be made and stored in the installation dossier

Checking fault and alarm actuation

Test	Procedure	Action
Block or switch off fire control installations and remote alarms on the superordinate FACP.		
Check airflow monitoring	Tape sam- pling holes (adhesive ta- pe; number depends on the pipe con- figuration).	- As soon as the change is exceeded by $\pm 20 \%$ the "Fault" LED begins to flash. - When the LS-Ü delay expires (300 s), the ASD triggers a fault \rightarrow fault on FACP (1) / (2).
Check alarm actuation	Subject maintenance sampling hole or sampling hole to smoke.	- ASD actuates an alarm alarm on FACP; correct alarm actuation checked (zone and range actuation) on the FACP (1) / (2). - If there are pre-signals they are also actuated.

(1) Between each check the ASD 535 must be reset.
(2) For the ASD 535-2 and -4 checks have to be carried out for both sampling pipes.
Alternatively, this control can also be performed using EasyConfig switch position I.

Article numbers and spare parts

Short designation		Article number
Aspirating smoke detector	ASD 535-1	$11-2000015-01-\mathrm{XX}$
	ASD 535-2	$11-2000016-01-\mathrm{XX}$
	ASD 535-3	$11-2000017-01-\mathrm{XX}$
	ASD 535-4	$11-2000018-01-\mathrm{XX}$
	ASD 535-3 HD	$11-2000036-01-\mathrm{XX}$
	ASD 535-4 HD	$11-2000037-01-\mathrm{XX}$
AI 0,5-10 \%/m	SSD 535-1	$11-2000008-01-\mathrm{XX}$
VS 0,05-9 $\% / \mathrm{m}$	SSD 535-1 CP	$11-2000011-01-\mathrm{XX}$
AI 0,1-10 $\% / \mathrm{m}$	SSD 535-2	$11-2000009-01-\mathrm{XX}$
VS 0,01-9 $/ \mathrm{m}$	SSD 535-2 CP	$11-2000012-01-\mathrm{XX}$
AI 0,02-10 \%/m	SSD 535-3	$11-2000010-01-\mathrm{XX}$
VS 0,002 -9 $\% / \mathrm{m}$	SSD 535-3 CP	$11-2000013-01-\mathrm{XX}$
		$\rightarrow-\rightarrow$

Continuation:

Short designation	Article number
eXtended Line Module XLM 35	11-2200003-01-XX
Module M-Line ML-SFD	11-2200015-01-XX
SecuriLine module SLM 35	4000286.0101
Relay Interface Module RIM 35	11-2200031-01-XX
Memory Card Module MCM 35	4000285.0101
SD memory card (industrial version)	11-4000007-01-XX
Serial Interface Module SIM 35	11-2200000-01-XX
Serial Master Module SMM 535	11-2200001-01-XX
USB cable, 4.5 m	4301248
Overvoltage Protection Board OPB 911 CP	11-2200038-01-XX
AMB 35-1 (for ASD 535-1 /-3)	11-2200016-01-XX
AMB 35-2 (for ASD 535-2 / -4)	11-2200017-01-XX
AMB 35-1 CP (painted, for ASD 535-3 HD)	11-2200021-01-XX
AMB 35-2 CP (painted, for ASD 535-4 HD)	11-2200022-01-XX
BCB 35 (without smoke level indicator)	4301220.0101
ACB 35 (with smoke level indicator)	4301221.0101
ACB 35 CP (painted, for ASD 535-x HD)	11-2200020-01-XX
Aspirating fan unit AFU 35, complete	4000299
Airflow sensor AFS 35	4000300
Insect Protection Screen IPS 35 (set of 2)	11-2300012-01-XX
Latch plate $2^{\text {nd }}$ channel (set of 50)	11-2300009-01-XX
Lithium battery	11-4000002-01-XX
Cable screw union M20 (set of 10)	11-4000003-01-XX
M25 (set of 10)	11-4000004-01-XX
Adapter US cable screw union AD US M-Inch	11-2300029-01-XX
Universal Module Support UMS 35	4301252.0101
Technical description ASD 535	T 131192
Application guidelines for deep-freeze warehous	uses T 131390
Material for the sampling pipe	T 131194
Commissioning protocol	T 131199
Data sheets XLM 35	T140 088
ML-SFD	T140822
SLM 35	T 131197
RIM 35	T 131196
MCM 35	T 131195
AFU 35 installation instructions	T 131200
Integration description on SecuriPro	T 131218
Declaration of performance	
www.securiton.ch/declaration-of-performance	

Dimensional drawing

Fig. 5 Detector housing dimensional drawing

Technical data

(1) Current consumption at maximum permitted voltage drop in the electrical installation (guideline value for calculating the conductor cross-section).
(2) May cause an immediate actuation of the protection circuit in power supplies with overload protection circuits (primarily in devices with no emergency power supply and output current of < 1.5 A).
(3) For protection type IP 66 an air re-circulation conduit is imperative.
(4) Lower or higher temperature ranges are possible after consulting with the manufacturer. The manufacturer must be consulted if deployment is to be in the condensation range.

Changes to Index "k" on pages: 1, 2, 3, 7, 7, 8, 9, 10

First edition: 18.01.2008 Po/Ksa
The product specifications contained in this document are subject to change without notice.
© Copyright by Securiton

